
FAIR + Software: decoding the principles

Morane Gruenpeter - Inria, Software Heritage

Outline

2

• Introduction

• Software source code a (forgotten) pillar of research

• Existing mechanisms, components and infrastructures

• FAIR ecosystem

• Literature analysis

• 10 meta-recommendations for the FAIR software definition

Milestone 2.15 `FAIRness of software`

3

Version 1.1
Lead Author (Org) : Morane Gruenpeter (INRIA)
Contributing Author(s) :

• Roberto Di Cosmo (INRIA),
• Hylke Koers (SURF),
• Patricia Herterich (DCC),
• Rob Hooft (DTL),
• Jessica Parland-von Essen (CSC),
• Jonas Tana (CSC),
• Tero Aalto (CSC),
• Sarah Jones (DCC)

Reviewed by experts from the FAIR4RS Working Group

Open consultation document

10.5281/zenodo.4095092

https://docs.google.com/document/d/1yvdLSP6oH3XozVy4CJtThzGNHkseCBdvmxfruDYLB6Q/edit?usp=sharing
https://doi.org/10.5281/zenodo.4095092

Goals for today

4

• Review different mechanisms, components and infrastructures that can

improve the FAIRness of software in the scholarly ecosystem (section 5)

• Present the analysis if the FAIR principles are seen relevant, achievable

and measurable when it comes to software in the literature (section 3)

• Introduce 10 high-level recommendations for future work to define FAIR

principles for research software (section 6)

Outline

5

• Introduction

• Software source code a (forgotten) pillar of research

• Existing mechanisms, components and infrastructures

• FAIR ecosystem

• Literature analysis

• 10 meta-recommendations for the FAIR software definition

6

“Software, instructions that tell a computer what to do. Software comprises the
entire set of programs, procedures, and routines associated with the operation of a
computer system. The term was coined to differentiate these instructions from
hardware—i.e., the physical components of a computer system.

”
Encyclopædia Britannica Access date: November 18, 2020

https://www.britannica.com/technology/software

What is software?

Software as a concept
● project or entity
● the community around the

project
● the software idea / algorithms /

solutions

Software artifact
● each revision in source code form
● binaries produced for different

environments

https://www.merriam-webster.com/dictionary/comprises
https://www.britannica.com/technology/computer
https://www.merriam-webster.com/dictionary/differentiate
https://www.britannica.com/technology/hardware-computing

Software is all around us

7

Apollo 11 Guidance Computer (~60.000 lines), 1969

"When I first got into it, nobody knew what it was that we were
doing. It was like the Wild West."

Margaret Hamilton

Tim Berners-Lee invented the World Wide Web, 1989, while
working at CERN on a NeXT machine

 “The Semantic Web is not a separate
Web but an extension of the current
one, in which information is given
well-defined meaning, better
enabling computers and people to
work in cooperation."

Berners-Lee, T., Hendler, J., & Lassila, O. (2001, May 17).

https://web.archive.org/web/20201119040950/https://www-sop.inria.fr/acacia/cours/essi2006/Scientific%20American_%20Feature%20Article_%20The%20Semantic%20Web_%20May%202001.pdf

Software Source Code is special (not just data)

8

Software evolves over time

• projects may last decades
• the development history is key to

its understanding

Complexity

• millions of lines of code
• large web of dependencies

• easy to break, difficult to
maintain

• sophisticated developer
communities

https://www.reddit.com/r/ProgrammerHumor/comments/70fump/prog
ramming_is_magic/

Software Source Code human readable and executable knowledge

9

Go to the code!

“Programs must be written for people to read, and only incidentally for
machines to execute.”

Harold Abelson, 1985
Structure and Interpretation of Computer Programs (1st ed.),

“Source code provides a view into the mind of the designer.”
Len Shustek, 2006

Computer History Museum

https://archive.softwareheritage.org/swh:1:cnt:41ddb23118f92d7218099a5e7a990cf58f1d07fa;origin=https://github.com/chrislgarry/Apollo-11;visit=swh:1:snp:206c27c0c031c6aac6b5fedddba8fe082dea9836;anchor=swh:1:rev:3913f198f4383d4d638c0485d6aa902ff2f35828;path=/Luminary099/BURN_BABY_BURN--MASTER_IGNITION_ROUTINE.agc;lines=64-72/

10

Software in Research: A pillar of Open Science

Multiple facets, it can be seen as:
- a tool

- a research outcome or result

- the object of research

Three pillars of Open Science
Gruenpeter, Software Heritage CC-By 4.0 2019

11

Why are we here? A plurality of needs

Researchers

• archive and reference software

used and created in articles

• find useful software

• get credit for developed software

• verify/reproduce/improve results

Laboratories/teams

• track software contributions

• produce reports

• maintain web page

Research Organization

know its software assets for:

• technology transfer,

• impact metrics,

• strategy

Outline

12

• Introduction

• Software source code a (forgotten) pillar of research

• Existing mechanisms, components and infrastructures

• FAIR ecosystem

• Literature analysis

• 10 meta-recommendations for the FAIR software definition

The landscape of Existing Mechanisms and Components

13

• Software Identification

• extrinsic: ASCL-ID, ARK, DOI, RRID,

swMath-ID, Wikidata

• intrinsic: SWHID

• Metadata: CodeMeta

• Software licenses and SPDX

• Software curation

• Software artifact evaluation and badging

• AEC

• ACM

• NISO

https://docs.softwareheritage.org/devel/swh-model/persistent-identifiers.html
https://codemeta.github.io/
https://spdx.org/licenses/
https://www.artifact-eval.org/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://groups.niso.org/apps/group_public/download.php/23561/RP-31-202X_Reproducibility_Badging_draft_for_public_comment.pdf

Software Identification: what target to identify?

14

Software concept / project / collection
 Description in registry, a homepage or any other form of metadata record

- Project versions (for example Python2 and Python3)

- Modules

- Sub-modules

Software artifact

- Executable (download link)

- Software source code

- Dynamic artifact - current development code

- Archived copy

- Snapshot (all branches, all dev history)

- Release / Package

- Commit- a specific point in development history

- Directory

- File

- Algorithm

SWHID

SWHID

SWHID

SWHID

SWHD

SWHD

Research Data Alliance/FORCE11 Software Source Code Identification WG et al. (2020). Use cases and identifier schemes for
persistent software source code identification (V1.1). Research Data Alliance. https://doi.org/10.15497/RDA00053

https://doi.org/10.15497/RDA00053

Metadata landscape

15

 Each vocabulary is also linked to its ecosystem:

● digital preservation;

● linked data;

● catalogs / registries;

● scholarly ecosystem

Software ontologies landscape from Pathways for Discovery of Free Software (slide deck from

LibrePlanet 2018). (Gruenpeter & Thornton, 2018) CC-by-4

https://docs.google.com/document/d/1yvdLSP6oH3XozVy4CJtThzGNHkseCBdvmxfruDYLB6Q/edit#bookmark=id.z22lzmev966v

CodeMeta initiative

16

● A subset of schema.org

● An academic community discussing

software metadata

● A crosswalk table - mapping the

metadata landscape

An open source tool to create

codemeta.json files

Contributed to the community by
Use it directly on the CodeMeta hosted version

Contributions are welcome on the code repository

https://codemeta.github.io/codemeta-generator/
https://github.com/codemeta/codemeta-generator

ACM take on Reproducibility

17

ACM Terminology (no consensus yet!)

● Repeatability \ same team, same
experimental setup

● Reproducibility* \ different team,
same experimental setup

● Replicability* \ different team, different
experimental setup

*”As a result of discussions with the National Information Standards Organization
(NISO), it was recommended that ACM harmonize its terminology and definitions with
those used in the broader scientific research community”
NISO Taxonomy, Definitions, and Recognition Badging Scheme Working
Group

“Sometimes, if you don’t have the software, you don’t have
the data”

Christine Borgman, Paris, 2018

https://groups.niso.org/apps/group_public/download.php/23561/RP-31-202X_Reproducibility_Badging_draft_for_public_comment.pdf
https://groups.niso.org/apps/group_public/download.php/23561/RP-31-202X_Reproducibility_Badging_draft_for_public_comment.pdf

The landscape of Existing Infrastructures

18

• Archives (HAL, Software Heritage,

Zenodo)

• Publishers (SoftwareX, JOSS, Dagstuhl,

eLife, IPOL)

• Registries / Aggregators (swMATH, scanR,

OpenAIRE)

• Research Software Training (The

carpentries)
Four pillars: Archive, Reference, Describe, Credit
2020 - EOSC Scholarly Infrastructures for Research
Software
Link to document waiting for the EU commission publication
(community consultation ended on the 10.11.2020)
● Chairs

○ Roberto Di Cosmo, Software Heritage

○ José Benito Gonzalez Lopez, Zenodo

https://docs.google.com/document/d/1yObRCR7COQctpjMdg-rNenRZ7ZeUZ-u0iyvdpPRK598/edit?usp=sharing

Version control system (VCS) history

19

• records changes made to a (set of) source code file (s)
• allows to operate on versions: diff/merge/fork/recover etc.
• essential tool for software development

20

Collect, preserve and share all software source code
Preserving our heritage, enabling better software and better research for all

How it works?

● automatic pull from different forges (GitHub, GitLab, BitBucket),

● intrinsic metadata is extracted from the content itself,

● deposited artifacts are accepted only from known sources where metadata was

moderated and curated

● Save Code Now mechanism for git, svn and mercurial repositories

● SWHID persistent identifiers for all the source code artifacts Visit the archive

https://archive.softwareheritage.org/save/
https://archive.softwareheritage.org/

Outline

21

• Introduction

• Software source code a (forgotten) pillar of research

• Existing mechanisms, components and infrastructures

• FAIR ecosystem

• Literature analysis

• 10 meta-recommendations for the FAIR software definition

22

Bridge between
 Software and FAIR

Four Foundational Principles

23

Findable

Accesible

Interoperable

Reusable

2016 - The FAIR guiding principles (Wilkinson et al. 2016)
Figure 2: Illustration of ANDS resources which reflect or crosscut the FAIR
principles. Image: ANDS. CC: BY 4.0

https://doi.org/10.1038/sdata.2016.18
https://www.ands.org.au/working-with-data/fairdata/training

Where we stand?

24

24

2018 - The Turning FAIR into reality report
(European Commission, 2018)

Action 16.2: The FAIR data principles and this

Action Plan must be tailored for specific

contexts - in particular to the relevant research

field - and the precise application nuanced, while

respecting the objective of maximising data

accessibility and reuse. Stakeholders: Research

communities; Data service providers;

Policymakers

2019 - `Six Recommendations for Implementation
of FAIR Practice` (FAIR Practice TF, 2020)

2019 - the Opportunity Note by the French
national Committee for Open Science's Free
Software and Open Source Project Group
(Clément-Fontaine, 2019)

Recommendation n°5 : Recognise that FAIR

guidelines will require translation for other digital

objects and support such efforts.

Recommendation n° 2 : Make sure the specific
nature of software is recognized and not
considered as “just data” particularly in the context
of discussion about the notion of FAIR data.

https://doi.org/10.2777/1524
http://doi.org/10.5281/zenodo.3931993European
https://www.ouvrirlascience.fr/opportunity-note-encouraging-a-wider-usage-of-software-derived-from-research

FAIR Ecosystem

25

</> software icon

Figure 1: FAIR vision: Ecosystem components, to highlight the software roles in the Ecosystem, the symbol </>
was added (Original diagram 3 from L’Hours & Von Stein, 2020)

https://docs.google.com/document/d/1yvdLSP6oH3XozVy4CJtThzGNHkseCBdvmxfruDYLB6Q/edit#bookmark=id.piyd9ey94um5

Outline

26

• Introduction

• Software source code a (forgotten) pillar of research

• Existing mechanisms, components and infrastructures

• FAIR ecosystem

• Literature analysis

• 10 meta-recommendations for the FAIR software definition

Literature analysis

27

1. Towards FAIR principles for research software (Lamprecht et al., 2019) published in the Data Science journal, issue ‘FAIR Data, Systems and Analysis’ aiming on

translating the FAIR principles to research software. Their effort is supported with two case studies, along with recommendations for rewriting the FAIR

principles to make them more applicable to software.

2. “5 recommendations for FAIR software” from the Netherlands eScience Center and DANS straightforward guidelines for researchers on how to make software

FAIR, which are available on a dedicated website to help researchers with their own software.(https://fair-software.nl/)

3. Software citation principles (Smith et al., 2016)

published in PeerJ Computer Science is a result of the FORCE11 Software Citation Working Group, defining high level principles on software citation.

4. RDA Software Source Code Interest Group (SSC IG) P13 activity translating FAIR principles to software

an ad-hoc activity conducted during the RDA P13 SSC IG session, where participants were asked to map the existing FAIR principles for data to possible

principles for software. Participants were asked to add items that are not in the FAIR principles.

5. From FAIR research data toward FAIR and open research software (Hasselbring, 2020) published in the journal IT - Information Technology and aims at

translating the FAIR principles to research software and producing a list of recommendations based on the FAIR principles and other resources.

6. Attributing and Referencing (Research) Software: Best Practices and Outlook From Inria (Alliez et al., 2019) published in IEEE Computing in Science &

Engineering aiming to analyze the existing practices handling research software at the Inria research center and providing recommendations to the academic

community.

7. Software vs. data in the context of citation (Katz et al., 2016) a PeerJ preprint, which details the differences between software and data, and providing simple

recommendations for software citation.

8. The science code manifesto (Barnes et al., 2011) an online manifesto, published in 2011 by the Climate Code Foundation. It was endorsed by 1227 researchers

and organizations. It proposes five principles to reform scientific software in institutions.

9. CoSO Opportunity Note: Encouraging a wider usage of software derived from research by The Committee for Open Science's Free Software and Open Source

Project Group (Clément-Fontaine, 2019)

a committee note from the French National Open Science committee declaring the importance of software in Open Science and formulating recommendations

to encourage and promote better practices for handling software in institutions.

https://doi.org/10.3233/DS-190026
https://fair-software.nl/
https://doi.org/10.7717/peerj-cs.86
https://www.rd-alliance.org/rda-p13-activity-summary-applying-fair-software-dated-avril-2019
https://doi.org/10.1515/itit-2019-0040
https://doi.org/10.1109/MCSE.2019.2949413
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5992
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5992
https://doi.org/10.7287/peerj.preprints.2630v1
http://sciencecodemanifesto.org
https://hal.archives-ouvertes.fr/hal-02545142

Methodology

28

The exact text used in the original resource is included, to preserve the
original semantics

Key criteria
● Relevant - is this principle seen to be relevant to software by being

frequently mentioned in the proposed resources?

● Achievable - seen to be achievable when it comes to software?

● Measurable - seen to be measurable on software artifacts?

● Benefits - seen to be useful and benefits the software resource?

○ Quality curation of the software resource

○ Recognition of software in scholarly communications

N/A doesn’t

appear (white)

* observed in a

small subset (one

paper)

**medium subset

(2-3)

*** large subset

(3+ papers)

! disagreeing

R1.1. (meta)data are released with a clear and
accessible data usage license

29

FAIR Relevant Achievable Measurable Benefits

R1.1. (meta)data are released with a clear and accessible data usage

license.

*** *** *** ***

N/A doesn’t

appear (white)

* observed in a

small subset (one

paper)

**medium subset

(2-3)

*** large subset

(3+ papers)

! disagreeing

“Any creative work (including software) is automatically protected

by copyright. Even when the software is available via code sharing

platforms such as GitHub, no one can use it unless they are explicitly

granted permission. This is done by adding a software license, which

defines the set of rules and conditions for people who want to use

the software.” (“5 recommendations for FAIR software”)

“Ideally licenses should be in rights expression languages” (SSC

IG P13 activity)

“Software is a creative work, scientific data are facts or

observations In particular, software is generally subject to

copyright protection as a creative work that can continue to

evolve over time, while scientific data is frequently considered

outside the domain of copyright as it is comprised of contextual

facts about the world…”(Software vs. data in the context of

citation)

“Copyright: The copyright ownership and license of any released
source code must be clearly stated.” (The science code manifesto)

“Recommendation n° 9: Encourage and
facilitate the creation of "legal toolboxes" to
ensure the long-term preservation of free
software resulting from research.”

(CoSO opportunity note)“Software and its associated metadata have independent, clear

and accessible usage licenses compatible with the software

dependencies. [Rephrased and extended] “(Towards FAIR

principles for research software)
Software license is only mentioned in the use cases

table and with an + sign which states: indicate that the

use case would benefit from that metadata if

available.(Software citation principles)

I.3 (meta)data include qualified references to other
(meta)data

30

 (not explicitly discussed) (“5 recommendations for FAIR software”)

(not explicitly discussed)(SSC IG P13 activity)

“Discarded”

“I3 aims to interconnect data sets by semantically meaningful

relationships..... However, such relationships are difficult to

translate to the case of research software. We found the closest

resemblance of this principle to be in software dependencies.” =>

I4S (Towards FAIR principles for research software)

“The software should be linked to a list of publications using the
code, to other versions of the code, to relevant versions of tools
and libraries used, and to derived code.” (The science code
manifesto)

“it is therefore necessary to define reference
methodologies for technology transfer based
on existing mechanisms (....), and to share
them with the actors concerned (...).”

(CoSO opportunity note)

(not explicitly discussed)(Software citation principles)

“First, the frequent lack of availability of the software source code, and/or of

precise references to the right version of it, is a major issue [7]. Solving this

issue (Reproducibility) requires stable and perennial source code archives and

specialized identifiers [9].”(Attributing and Referencing (Research) Software)

FAIR Relevant Achievable Measurable Benefits

I3. (meta)data include qualified references to other (meta)data. ** * N/A ***

 (not explicitly discussed)(Software vs. data in the context of citation)

N/A doesn’t

appear (white)

* observed in a

small subset (one

paper)

**medium subset

(2-3)

*** large subset

(3+ papers)

! disagreeing

I4S- Software dependencies are documented and mechanisms to access them exist. [Newly proposed]

Compendium of FAIR software analysis

31

Compendium of FAIR software analysis

32

Compendium of FAIR software analysis

33

Compendium of FAIR software analysis

34

Coverage of facets within the literature corpus

35

Beyond the FAIR principles

36

• Interoperability: dependencies and execution environment
• I4S- Software dependencies are documented and mechanisms to access them exist. [Newly proposed] (Towards FAIR principles for research software)

• “...software dependencies need to be clearly documented in a formal, accessible, machine-readable, and shared way, and formally described following

each programming language format.” (Towards FAIR principles for research software)

• Usage of version control systems to track changes
Using a version control system allows you to easily track changes in your software, both your own changes as well as those made by collaborators(5

recommendations for FAIR software)

• Credit and attribution
• Credit and Attribution: Software citations should facilitate giving scholarly credit and normative, legal attribution to all contributors to the software,

recognizing that a single style or mechanism of attribution may not be applicable to all software.

• Credit: “Software contributions must be included in systems of scientific assessment, credit, and recognition.”(The science code manifesto)
• Recommendation n° 4: Construct a consensual definition of a "contribution" to research software.(CoSO)
• Recommendation n° 5: Build tools which integrate this notion of a contribution to be able to effectively credit authors/designers for their software

contributions.(CoSO)

• Testing & Software quality
• “Adequate documentation is important, but so are engineering practices such as providing testing frameworks and test data for continuous integration

to ensure that future adaptations can be tested to ensure that they work correctly.”(From FAIR research data toward FAIR and open research software)

37

What challenges do researchers in your community encounter when

trying to:

A. find relevant research software on the web

B. re-use relevant research software on the web

*the FAIRsFAIR survey presented in D2.1 and captured in https://doi.org/10.5281/zenodo.3518922

Technical challenge:

Software dependencies and

environment
Documentation Accessibility & Licensing

Time & Skill Quality control
Software sustainability &

management plan

Challenges seen in the FAIRsFAIR survey*

Outline

38

• Introduction

• Software source code a (forgotten) pillar of research

• Existing mechanisms, components and infrastructures

• FAIR ecosystem

• Literature analysis

• 10 meta-recommendations for the FAIR software definition

Recommendations and adoption

39

Each recommendations has a requirement level, as defined in RFC2119:

● MUST is an absolute requirement

● SHOULD is a needed requirement for which exceptions are possible

● MAY is an optional requirement

It is to be acknowledged that any new principle may lead to extra requirements

enforced on researchers, who are already facing significant challenges when

developing or maintaining software, which is a complex and living object.

In order to maximize adoption, clear and immediate benefits should be offered

to the researcher.

10 Recommendations

40

Recommendation n°1

FAIR principles for research software outcomes MUST be produced by taking into account the specific nature of

software and not as just a simple adaptation of the FAIR guiding principles for data.

Recommendation n°2

Applying principles and recommendations to software demands effort, time and skill. The realistic nature of

these principles MUST be considered.

Recommendation n°3

A large community forum MUST be consulted when writing the principles. This community forum MUST

include stakeholders from different disciplines and with different roles, looking at software in all its aspects: as

a tool, as a research outcome and as the object of research.

Recommendation n°4

Existing infrastructures that already provide solutions for software artifacts SHOULD be asked to review the

FAIR principles for research software.

10 Recommendations

41

Recommendation n°5

Each principle MUST be relevant for software source code.

Recommendation n°6

Each principle MUST be achievable for software source code.

Recommendation n°7

Each principle SHOULD be measurable for software source code; detailed explanations of how a

measurable principle is measured MUST be available.

Recommendation n°8

Each principle SHOULD contribute to software recognition in scholarly communication.

10 Recommendations

42

Recommendation n°9

Each principle SHOULD contribute to the curation quality of the software resource.

Recommendation n°10

Each principle MAY solve one or more research software challenges

(e.g credit, reproducibility, sustainability & management, documentation, quality control, quality

metadata, licensing and more).

FAIR for Research Software (FAIR4RS) Working Group

43

Main objective

Defining FAIR principles for research software

Timeline

• April 2020 - Formed after the RDA VP15

• July 2020 - Launched with 4 subgroups

• September 2020 - Endorsed by RDA

Steering committee:

Morane Gruenpeter, Paula A. Martinez, Carlos Martinez, Michelle Barker, Daniel S. Katz, Leyla
Garcia, Neil Chue Hong, Fotis Psomopoulos and Jennifer Harrow

Join the WG

https://www.rd-alliance.org/groups/fair-4-research-software-fair4rs-wg

How to get involved?

44

1. Participate in the community review of the FAIRsFAIR milestone

2.15 assessment report on `FAIRness of software`

2. Join the FAIR4RS Working Group

a. receive updates

b. contribute to the subgroups work

c. discuss the FAIR definition for research software

3. Adopt the existing infrastructures and mechanisms

4. Spread the word and let’s start recognizing software in academia

http://doi.org/10.5281/zenodo.4095092
https://www.rd-alliance.org/groups/fair-4-research-software-fair4rs-wg

45

Thank you for joining us

Keep in touch: morane@softwareheritage.org
@moraneottilia, @FAIRsFAIR_EU, @SWHeritage

https://www.fairsfair.eu/fairsfair-newletters/
https://www.softwareheritage.org/newsletter/

mailto:morane@softwareheritage.org
https://www.fairsfair.eu/fairsfair-newletters/
https://www.softwareheritage.org/newsletter/

